过刊浏览
摘要:小学数学是学生数学学习的起始阶段,加强对小学生数学学习思想和方法的指导,对于提升学生的数学学习能力具有重大意义。以形助数是数形结合中的一种重要思想方法,其可以将抽象的数学概念和问题具象化,便于学生更好地理解和掌握,将其运用到小学数学教学中,可以有效实现对学生数学学习的优化。为此,本文主要对如何在小学数学教学中运用以形助数的思想方法进行了简要分析,希望可以给相关人员带来启示。
关键词:以形助数;小学数学;学习方法
中图分类号:G623.5 文献标识码:A
引言
在现代教育理念中,对于学生综合素质和能力的培养提出了较高的要求。这就要求小学数学教师需要对自身的教育观念进行及时更新,并探索全新数学教学方式,引导学生高效学习。而以形助数则是一种非常符合小学生具象思维的数学思想方法,其主要是指借助直观图形的方式来阐述数学中的各种数量关系的数学思想,将其运用到数学课堂中,可以将复杂的数量问题或概念简单化,便于学生更好地理解和掌握,促使学生实现高效学习。那么如何在数学课堂中巧妙地运用以形助数这一思想方法呢?接下来,我们就此进行具体分析。
一、以形助数在小学数学教学中的应用优势
数量和图形是数学学科领域中最基本的两大研究对象,在一定的条件下,这二者可以实现相互转化,因而出现了数形结合的思想方法,其在数学知识的学习和探索中占据着非常重要的地位。数学结合的思想方法具体可以划分为以形助数、数形互助、以数解形三个部分,其中以形助数的思想运用最为广泛,该思想的核心为通过直观图像将抽象、复杂的数量关系具体化、简单化[1]。由于受到年龄的限制,小学生的思维能力尚未发展成熟,在对数学知识和问题进行思考探究时必须要靠具象、感性的材料。合理运用以形助数的思想方法进行数学学习,可以为学生理解和获取数学知识提供有效思维工具,帮助学生扫除认知上的障碍,提升学生的数学学习能力和水平。
二、借助以形助数思想方法优化小学生数学学习的策略
1.借助以形助数,简化数学概念
小学生正处于形象思维向抽象思维发展的关键阶段,因而小学生的思维依旧以形象思维为主,在思考和分析问题时,也主要以直观事物和表面信息为主要参考依据。但数学知识是从现实生活中抽象而来的,在对数学知识学习和理解的过程中,要求学生必须要具备一定的抽象思维,这也使得很多小学生在数学知识学习的过程,经常会出现思维上的混淆,尤其是在对数学概念理解时[2]。针对这一现象,教师就可以在数学概念的教学中,将以形助数的思想方法引导到其中,将数学概念具象化、简单化,便于学生理解和掌握。
例如,在对“乘法分配律”进行教学时,为了帮助学生更好地去理解和把握乘法分配律的概念,教师则可以借助长方形面积计算过程来实现。首先,教师可以在黑板上画出一个长为8cm,宽为6cm长方形,并在长方形中画出一条线,将长方形分为一个长为2cm、宽为6cm的长方形和一个边长为6cm的正方形,然后教师可以让学生计算出这个长方形的面积,这时学生会得出两种计算方式:(1)长方形的面积=6×2+6×6=48cm2;(2)长方形的面积=6×(2+6)=48cm2。通过对这两种计算方式进行对比后,学生不难发现计算出的结果是相同的,并由此得出6×2+6×6=6×(2+6)。经过引导后,学生自然会对乘法分配律的概念形成更加清晰的认知和理解,进而达到良好的教学效果。
2.借助以形助数,提升问题解决能力
我们都知道以形助数是一种可以将抽象数量关系通过直观方式呈现出来的数学思想方法,同时也是一种非常有效的问题解决思路和方法,在小学数学教学中,教师则可以引导学生利用以形助数的思想方法,尝试将数学问题中抽象、复杂的数量问题直观化,找到问题解决的突破口,提升学生问题解决的能力。同时教师也可以让学生在解答问题后,利用图形的方式,对答案进行验证,以此来提升解题的正确率。
例如,在对“小华排队买早餐,在他排的队伍中,他前面有4个人,后面有6个人,这个队伍一共有多少人排队”。虽然这个问题比较简单,但很多学生在解题时,却容易漏掉题目中的关键信息,没有将小华算进去,进而得到错误答案10人。为了保证学生的答题正确率,教师则可以让学生将题目中的信息转化为具体图像,先将小华用一个圆圈代替,然后在他的前面画出4个圆圈,在他的后面画出6个圆圈,通过对这些圆圈的相加后发现,正确答案应该为11人。通过将数学问题中的数量信息用直观图像的方式呈现出来,有利于学生抓抓问题的关键点,帮助学生形成清晰的解题思路,进而提升学生的问题解决能力以及解题正确性。
3.以形助数,明确算理
小学数学是学生数学知识奠定的关键时期,在这一时期的学习中,要想保证学习效果,就需要学生即知其然,还应知其所以然。小学数学知识中计算占据着较大比例,很多学生在数学学习过程中,虽然都能够掌握基本计算方法,并能运用这些方法完成简单的计算,但却没有真正理解过算理,导致他们在计算时经常会思路混乱的情况。为此,教师在进行计算部分的内容讲解时,则可以借助图形的方式,帮助学生去理解数理,以此来真正提升学生的计算能力[3]。
例如,在对分数乘法这一部分的计算内容进行教学时,很多学生都能够根据分数的计算方法正确计算出答案,但却不能很好地理解和掌握算理,在计算过程中容易出错。为此,教师就可以以×为例,借助图形的方式来帮助学生对分数乘法的算理进行理解。首先,教师可以在黑板上画出一个长方形表示1,然后将这个长方形平均分成3份,其中的1份就是,然后教师再将这份平均分成4份,其中一份就是份中的份。这时学生会发现之间最早的表示1的长方形被分成了12份,而份中的份就是份。经过这一引导可以帮助学生更好地理解分数乘法的算理。
结语
综上所述,以形助数是一种非常符合小学生的数学思想方法,将其运用到小学数学课堂中,对于优化学生的数学学习,促进学生数学思维能力的发展等都具有积极作用。因此,小学数学教师应加强对这一方面的重视和研究,并在教学实践中,引导学生合理使用以形助数的方法,提升学生的数学学习水平,促进学生数学思维能力的发展,为学生今后的数学学习奠定良好基础。
没有PDF文件供下载
关键词:以形助数;小学数学;学习方法
中图分类号:G623.5 文献标识码:A
引言
在现代教育理念中,对于学生综合素质和能力的培养提出了较高的要求。这就要求小学数学教师需要对自身的教育观念进行及时更新,并探索全新数学教学方式,引导学生高效学习。而以形助数则是一种非常符合小学生具象思维的数学思想方法,其主要是指借助直观图形的方式来阐述数学中的各种数量关系的数学思想,将其运用到数学课堂中,可以将复杂的数量问题或概念简单化,便于学生更好地理解和掌握,促使学生实现高效学习。那么如何在数学课堂中巧妙地运用以形助数这一思想方法呢?接下来,我们就此进行具体分析。
一、以形助数在小学数学教学中的应用优势
数量和图形是数学学科领域中最基本的两大研究对象,在一定的条件下,这二者可以实现相互转化,因而出现了数形结合的思想方法,其在数学知识的学习和探索中占据着非常重要的地位。数学结合的思想方法具体可以划分为以形助数、数形互助、以数解形三个部分,其中以形助数的思想运用最为广泛,该思想的核心为通过直观图像将抽象、复杂的数量关系具体化、简单化[1]。由于受到年龄的限制,小学生的思维能力尚未发展成熟,在对数学知识和问题进行思考探究时必须要靠具象、感性的材料。合理运用以形助数的思想方法进行数学学习,可以为学生理解和获取数学知识提供有效思维工具,帮助学生扫除认知上的障碍,提升学生的数学学习能力和水平。
二、借助以形助数思想方法优化小学生数学学习的策略
1.借助以形助数,简化数学概念
小学生正处于形象思维向抽象思维发展的关键阶段,因而小学生的思维依旧以形象思维为主,在思考和分析问题时,也主要以直观事物和表面信息为主要参考依据。但数学知识是从现实生活中抽象而来的,在对数学知识学习和理解的过程中,要求学生必须要具备一定的抽象思维,这也使得很多小学生在数学知识学习的过程,经常会出现思维上的混淆,尤其是在对数学概念理解时[2]。针对这一现象,教师就可以在数学概念的教学中,将以形助数的思想方法引导到其中,将数学概念具象化、简单化,便于学生理解和掌握。
例如,在对“乘法分配律”进行教学时,为了帮助学生更好地去理解和把握乘法分配律的概念,教师则可以借助长方形面积计算过程来实现。首先,教师可以在黑板上画出一个长为8cm,宽为6cm长方形,并在长方形中画出一条线,将长方形分为一个长为2cm、宽为6cm的长方形和一个边长为6cm的正方形,然后教师可以让学生计算出这个长方形的面积,这时学生会得出两种计算方式:(1)长方形的面积=6×2+6×6=48cm2;(2)长方形的面积=6×(2+6)=48cm2。通过对这两种计算方式进行对比后,学生不难发现计算出的结果是相同的,并由此得出6×2+6×6=6×(2+6)。经过引导后,学生自然会对乘法分配律的概念形成更加清晰的认知和理解,进而达到良好的教学效果。
2.借助以形助数,提升问题解决能力
我们都知道以形助数是一种可以将抽象数量关系通过直观方式呈现出来的数学思想方法,同时也是一种非常有效的问题解决思路和方法,在小学数学教学中,教师则可以引导学生利用以形助数的思想方法,尝试将数学问题中抽象、复杂的数量问题直观化,找到问题解决的突破口,提升学生问题解决的能力。同时教师也可以让学生在解答问题后,利用图形的方式,对答案进行验证,以此来提升解题的正确率。
例如,在对“小华排队买早餐,在他排的队伍中,他前面有4个人,后面有6个人,这个队伍一共有多少人排队”。虽然这个问题比较简单,但很多学生在解题时,却容易漏掉题目中的关键信息,没有将小华算进去,进而得到错误答案10人。为了保证学生的答题正确率,教师则可以让学生将题目中的信息转化为具体图像,先将小华用一个圆圈代替,然后在他的前面画出4个圆圈,在他的后面画出6个圆圈,通过对这些圆圈的相加后发现,正确答案应该为11人。通过将数学问题中的数量信息用直观图像的方式呈现出来,有利于学生抓抓问题的关键点,帮助学生形成清晰的解题思路,进而提升学生的问题解决能力以及解题正确性。
3.以形助数,明确算理
小学数学是学生数学知识奠定的关键时期,在这一时期的学习中,要想保证学习效果,就需要学生即知其然,还应知其所以然。小学数学知识中计算占据着较大比例,很多学生在数学学习过程中,虽然都能够掌握基本计算方法,并能运用这些方法完成简单的计算,但却没有真正理解过算理,导致他们在计算时经常会思路混乱的情况。为此,教师在进行计算部分的内容讲解时,则可以借助图形的方式,帮助学生去理解数理,以此来真正提升学生的计算能力[3]。
例如,在对分数乘法这一部分的计算内容进行教学时,很多学生都能够根据分数的计算方法正确计算出答案,但却不能很好地理解和掌握算理,在计算过程中容易出错。为此,教师就可以以×为例,借助图形的方式来帮助学生对分数乘法的算理进行理解。首先,教师可以在黑板上画出一个长方形表示1,然后将这个长方形平均分成3份,其中的1份就是,然后教师再将这份平均分成4份,其中一份就是份中的份。这时学生会发现之间最早的表示1的长方形被分成了12份,而份中的份就是份。经过这一引导可以帮助学生更好地理解分数乘法的算理。
结语
综上所述,以形助数是一种非常符合小学生的数学思想方法,将其运用到小学数学课堂中,对于优化学生的数学学习,促进学生数学思维能力的发展等都具有积极作用。因此,小学数学教师应加强对这一方面的重视和研究,并在教学实践中,引导学生合理使用以形助数的方法,提升学生的数学学习水平,促进学生数学思维能力的发展,为学生今后的数学学习奠定良好基础。
没有PDF文件供下载